SECOND SEMESTER SYLLABUS

M. Sc. MATHEMATICS

BABA GHULAM SHAH BADSHAH UNIVERSITY RAJOURI, J&K, INDIA

COURSE SCHEME

DISTRIBUTION OF MARKS

COURSE CODE	COURSE TITLE	NO. OF CREDITS			
			SA	UE	TOTAL
MS - 231	Numerical Linear Algebra	4	40	60	100
MS - 232	Functional Analysis with Applications	4	40	60	100
MS - 233	Abstract Algebra with Applications	4	40	60	100
MS - 234	Complex Analysis with Applications	4	40	60	100
MS - 235	Elements of Accountancy	2	20	30	50
	(Students are required to opt one course from a list of rtments of the university at the beginning of semester	4	40	60	100
MS - 236	MatLab	2	25	25	50
	TOTAL	24	245	355	600

SA: Sessional Assessment

UE: University Examination

Course	Title	Numerical Linear Algebra	Maximum Marks	100
Course	Code	MS-231	University Examination	60
Credits	5	4	Sessional Assessment	40
			Duration of Exam.	3 HOURS
Objecti	ves	The main objective of this course is to introduce st problems of linear algebra.	udents to the fundamentals of linear algebra and	d numerical solutions of
UNIT 01	Matrices	Review of fundamental concepts of vector space; Ma transformations; change of basis matrix; similar mat its signature; uniqueness of determinant map.		•
UNIT 02	Spectral Theorey	Eigen values and eigen vectors of a matrix and a linvalue; diagonalizable linear mapping/matrix; Cayley- invariant subspaces of a vector space; primary deco sufficient conditions for simultaneous diagonalization	Hamilton theorem; minimum polynomial of a mat mposition theorem (statement only) and its specie	rix and its properties;
UNIT 03	Canonical and Bilinear Forms	Nilpotent linear transformations; existence of triang nilpotent linear transformation and its elementary pro symmetric and skew symmetric bilinear forms; qua quadratic form	operties; Jordan Block matrix; Jordan form; Jord	an basis; bilinear form;
UNIT 04	Numerical methods for linear systems	Gauss elimination method; Gauss Jordan elimination method; Cholisky's method; Jacobi iteration metho conditioning; well conditioning and condition number of	od; Gauss Seidel iteration method; matrix nor	
UNIT 05	Numerical methods for finding eigen values and eigenvectors	Power method; shifted inverse power method; Jac Householder's transformation and its computation; QR		

On successful completion of this course, we expect that a student

- 1 explain vector space, linear dependence / independence, basis and dimension, linear transformation, change of basis matrix, permutation and its signature.
- 2 explain the concept of characteristic polynomial to compute the eigen values and eigen vectors of a square matrix and Cayley-Hamilton theorem.
- 3 explain the concept of minimum polynomial of a matrix and its properties, primary decomposition theorem and diogonalization.
- 4 explain the concept of Nilpotent linear transformations, Jordan decomposition theorem, Jordan Block Matrix, Jordan form, Jordan basis.
- 5 explain the concept of bilinear forms, symmetric and skew symmetric bilinear forms, quadratic form and its properties.
- 6 explain the numerical methods such as Gauss- Jordan elimination method, LU factorization method, Doolettle method, Crout's method, Cholisky's method, Gauss-Seided iteration method for solving the system of linear equations.
- 7 explain the numerical methods such as power method, Jocabi's method, Household's method, QR method and theorems such as Gerschgorian's theorem, person's theorem.

Note for Paper Setting

TEXT BOOKS

1. Blyth, T.S. and Robertson, E. F., (2007), Basic Linear Algebra, 2nd Edition, Spinger.

2. Blyth, T.S. and Robertson, E. F., (2008), Further Linear Algebra, 2nd Edition, Spinger.

3. John, H. M. and Kurtis, D. F., (2007), Numerical Methods using Matlab, 4th edition, Prentice Hall of India Pvt. Limited, New Delhi.

REFERENCE BOOKS

1. Golub, G. and Loan, C. Van, (1996), Matrix Computations, 3rd edition, John Hopkins University Press.

2. Jain, M.K., Iyenger, S.R.K. and Jain, R.K., (2007), Numerical Methods for Scientific and Engineering Computation, 5th edition, New Age International Publication, New Delhi.

3. Kreyszig, E., Advanced Engineering Mathematics, 8th Edition, Wiley India Private limited.

Course	Title	Functional Analysis with Applications	Maximum Marks	100
Course	Code	MS-232	University Examination	60
Credit	5	4	Sessional Assessment	40
			Duration of Exam.	3 HOURS
Object	ives	The main objective of this course is to introduct its applications.	ice students to the fundamentals of functional ar	alysis and make them aware of
UNIT 01	Normed Spaces		normed spaces; completeness and equivalence sets in finite dimensional normed spaces; Ries	
UNIT 02	Linear operators or normed spaces	operators; continuity of linear operators on fir	linear operators; connection between continui ite dimensional spaces; completeness of normed s theorem for normed spaces and its consequences	space of operators; dual spaces
UNIT 03	Inner Product spaces	orthogonal complement of a set and its bas	rt spaces; existence of minimizing vector; orth ic properties; Bessel's inequality; total orthono al sets; isomorphism of Hilbert spaces of same d	ormal sets; Parseval's relation;
UNIT 04		properties; basic properties of self adjoint, u	presentation for sesquilinear forms; Hilbert a nitary and normal operators; Banach fixed point istence and uniqueness theorem, Fredholm and V	theorem and its applications to
UNIT	Reflexive spaces and	Reflexive spaces; Hilbert spaces and finite di	mensional normed spaces as examples of reflexi	ve spaces; separability of dual

05 fundamental theorems normed space as a sufficient condition for the separability of the normed space; uniform boundedness theorem and its application to space of polynomials and Fourier Series; Open mapping and closed graph theorems.

On successful completion of this course, we expect that a student

- 1 should be able to explain the concept of inner product and norm on a vector space.
- 2 should be able to explain the concept of normed, Banach & Hilbert spaces with standard examples and relation between them.
- 3 should be able to explain the concepts of bounded linear operator & bounded linear functional with standard examples.
- 4 should be able to explain the properties of linear operators on finite and infinite dimensional normed spaces.
- 5 should be able to explain the dual spaces of Rⁿ and l^p spaces and completeness of the normed space of operators.
- 6 should know the Banach contraction principle with applications to differential & integral equations.
- 7 should know the fundamental theorems such as Riez Lemma, Hahn Banach extension theorem, closed graph theorem, open mapping theorem, Principle of uniform boundedness, Bessel's inequality, projection theorem, Pansevals relation, Baire Category theorem and Riesz theorem with applications.
- 8 should be able to explain the concept of separable and reflexive normed spaces.

Note for Paper Setting

TEXT BOOKS

1. Kreyszig, E., (2006), Introductory Functional Analysis with Applications, 1st edition, Wiley Student edition.

REFERENCE BOOKS

- 1. Bachman, G. and Narici, L., (1966), Functional Analysis, Academic Press New York.
- 2. Cheney, W., (2000), Analysis for Applied Mathematics, Springer.
- 3. Rynne, B. P. and Youngson, M. A., (2008), Linear Functional Analysis, 2nd edition, Springer.
- 4. Siddiqi, A. H., (2004), Applied Functional Analysis, Marcel-Dekker, New York.

Course	Title	Abstract Algebra with Applications	Ma×imum Marks	100
Course	Code	MS-233	University Examination	60
Credits	5	4	Sessional Assessment	40
			Duration of Exam.	3 HOURS
Objecti	ves	The main objective of this course is to introduce st with their applications to coding theory.	udents to the fundamentals of abstract algebra- g	proup and ring theory
UNIT 01	Class equation and Sylow's theorem with applications	Conjugate of an element of a group; class equation Cauchy's theorem; number of a conjugate classes in S of Syllow's theorem(Proofs not included); Applicatio order 72, 20449, 225, 30, 385, 108, p2q (p,q prime	n; 1st part of Syllow's theorem (Proof by induction ns of Syllow's theorem in the determination of sin	n); 2nd and 3rd parts
UNIT 02	Ring theory	Definition and examples of rings; special classes o Homomorphism; ideals and quotient rings; maximal ide		an integral domain;
UNIT 03	Euclidean rings	Euclidean ring (ER); ideals in a ER; principle ideal r ER; relation between prime elements and maximal id field as examples of ERs.	- · · · · · · · · · · · · · · · · · · ·	•
UNIT 04	Polynomial Rings and UFD	Polynomials over the rational field; primitive polynomic rings over commutative rings; UFD and its relation wi		
UNIT 05	Algebraic coding theory:	Classification, structure and subfields of a finite correcting capability of a linear code; orthogonality r	-	

On successful completion of this course, we expect that a student

- 1 Class equation with applications, Cauchy theorem, Syllow's theorems with applications to find simplicity of a group.
- 2 The concept of ring with standard examples, different classes of rings such as Integral domain, field, ideal and quotient ring.
- 3 The concept of ideal with standard examples, maximal and prime ideals and quotient field of an Integral domain.
- 4 The concept of Unique factorization domain, Euclidean ring and Principal Integral domain and relation between them.
- 5 The concept of Ring of Gaussian integers and polynomials with properties.
- 6 Gauss lemma and Einstein's criteria.
- 7 the characterization of subfields of a finite field.
- 8 The concept of linear code, Hamming distance, coding, decoding, and syndrome.

Note for Paper Setting

TEXT BOOKS

- 1. Gallian, J. A. (1998), Contemporary Abstract algebra, Fourth edition, Narosa.
- 2. Herstein, I.N.(2004), Topics in Algebra, 2ndedition, Wiley.

REFERENCE BOOKS

- 1. Artin, M., (2010), Algebra, 2nd edition, Springer.
- 2. Farmer, D.W., (1963), Groups and Symmetry: A Guide to Discovering Mathematics, American Mathematical Society.
- 3. Jacobs, H. R., (1979), Elementary Algebra, 1stedition.
- 4. Levinson, N., (1970), Coding Theory: A Counter Example to G. H. Hardy's Conception of Applied Mathematics, AMS Monthly 77: 249-258

Course	Title	Complex Analysis with Applications	Maximum Marks	100
Course	Code	MS-234	University Examination	60
Credits	5	4	Sessional Assessment	40
			Duration of Exam.	3 HOURS
Objecti	ves	The objective of this course is to introduce stu tool with remarkable and almost mysterious utilit		is (with applications) which is a
UNIT 01	Complex Functions	Functions of complex variables, Limit and contin harmonic functions; C-R Equations; Exponentia exponents.		
UNIT 02	Integral of a complex function-I	Contour integral and its basic properties; ML integral formula; Derivative of an analytic functi		rem; winding number; Cauchy's
UNIT 03	Integral of a complex function-II	Cauchy's inequality; Liouville's theorem; Fundame mean value property; Max./Min. Modulus principl	-	heorem; Luca's theorem; Gauss
UNIT 04	Series Expansion	Power series; Taylor's theorem; Zeros of an Removable singularities, Poles and Essential singu	•	
UNIT 05	Calculus of Residues	Residues; Cauchy Residue theorem; connection b Rouche's theorem; Evaluation of Definite integral		Casorati-Weirstrass theorem;

On successful completion of this course, we expect that a student

- 1 Explain the concept of derivative of a complex function with its basic properties, analytic function, Cauchy Riemann equations.
- 2 Explain in detail the elementary complex functions such as exponential, trigonometric, hyperbolic, logarithmic, etc.
- 3 Describe contour integral, convex hull, open convex sets, simple connected domains & winding number etc.
- 4 Provide the proof of theorems like Cauchy-Gourset theorem, Cauchy integral formula, Cauchy inequality, Morera's theorem, Liouville's theorem, fundamental theorem of Algebra, maximum, minimum modulus theorem, reflection principle etc.
- 5 Differentiate between isolated and non- isolated regularities, zeroes and poles and should be able to find residues.
- 6 Explain the theorems like Riemann theorem, Residue theorem, Casorti Weirstrass theorem, argument principle, Hurwitz theorem, Riemann mapping theorem etc.
- 7 Find real integrals by using complex analysis techniques and construction of harmonic functions.

Note for Paper Setting

TEXT BOOKS

1. Kasana, H. S., (2012), Complex Variables, Theory and Applications, 2nd Edition, PHI learning Private limited, New Delhi-110001.

2. Ahlofrs, L. R., (1996), Complex Analysis, McGraw Hill.

3. Ponnusamy, S., (1972), Foundation of Complex Analysis, 2nd edition, Narosa Publishing House.

REFERENCE BOOKS

1. Brown, J. W. and Churchill, R. V., (2009), Complex Variables and Applications, 8th Edition, McGraw-Hill International.

2. Conway, J. B., (1973), Functions of one Complex Variable, 2nd edition, Springer International Student edition.

3. Rudin, W., (1987), Real and Complex Analysis, 3rd edition, McGraw Hill International Edition.

4. Mathews, J. H. & Howell, R. W., (2006), Complex Analysis for Mathematics and Engineering, 5th edition, B Jones and Bartlett Publishers.

Course Title	Elements of Accountancy	Maximum Marks	50
Course Code	MS-235	University Examination	30
Credits	2	Sessional Assessment	20
		Duration of Exam.	2 HOURS
Objectives	The objective of this course is to introduce student tool with remarkable and almost mysterious utility in	s to the fundamentals of Complex analysis (with applica applied mathematics.	tions) which is a
UNIT Accounting 01	Meaning, objectives, need, development and import scope of accounting, process of accounting cycle, dif	ance of accounting, definition and functions of account ference between accounting and book keeping.	ing, nature and
UNIT Financial accounting 02		ounting terms – business transaction, capital, drawings, sales, stock, debt, credit, receivables, payables, acco	• •
UNIT Basic assumptions of 03 Accounting	Accounting entity, money measurement, going conce objectivity, full disclosure, matching principle, histor	rn concept, accounting period concept; basic principles ical cost, Revenue recognition and quality principle.	of accounting -

On successful completion of this course, we expect that a student have understood

- 1 objectives, need, development and importance of accounting.
- 2 nature and scope of financial accounting.
- 3 basic Accounting terminology.
- 4 basic principles of accounting

Note for Paper Setting

TEXT BOOKS

1. Beams F.A, "Advanced Accounting".

REFERENCE BOOKS

- 1. Dearden J and S.K. Bhattacharya, "Accounting for Management".
- 2. Gupta. R. L, "Advanced Financial Accounting".
- 3. Monga. J. R, "Advanced financial Accounting".

		OLMLOT LK		
Course Titl	le	MatLab	Maximum Marks	50
Course Cod	le	MS-236	University Examination	25
Credits		2	Sessional Assessment	25
			Duration of Exam.	2 HOURS
Objectives .		The Lab course has been designed to train students problems of Numerical Analysis and linear algebra.	of Mathematics in using MatLab and computers in evolving	solutions to
* Ea	ch student is requi	ired to maintain a practical record book.		
* Tw	vo practical tests,	one Internal and one External, are to be conducte	d.	
* Ea	ch practical test w	vill be of 25 marks.		
* Th	e marks in each pr	ractical test will be divided into 4 parts, program	code, program execution , Viva-Voce and practical reco	rd book.
* Th	e student has to p	bass both internal and external practical tests sep	arately scoring a minimum of 10 marks in each test	

On successful completion of this course, we expect that a student have understood

- 1 the applicability of MATLAB in Mathematics in particular and engineering applications in general.
- 2 the commands of MATLAB which one uses to solve elementary problems of numerical Analysis.
- 3 the concept of M-file and Script file along with control flow programming.
- 4 the plotting of graphs of functions by using syntax and semantics.