FOURTH SEMESTER SYLLABUS

M. Sc. MATHEMATICS

BABA GHULAM SHAH BADSHAH UNIVERSITY RAJOURI, J&K, INDIA

COURSE SCHEME

			DISTRIBUTION OF MARKS		
COURSE CODE	COURSE TITLE	NO. OF CREDITS	SA	UE	TOTAL
	COMPULSO	RY COURSES			
MS - <mark>43</mark> 1	Dissertation/ Major Project	8	50	150	200
MS - <mark>43</mark> 2	Technical Communication	2	20	30	50
MS - 433	Lab course on SPSS	2	25	25	50
	Choice based Com	olementary Electives			
(5	Students are required to choose	any THREE of the follow	ving cour	ses)	
MS - <mark>43</mark> 4	Complex Dynamics	4	40	60	100
MS - 435	Banach Algebras	4	40	60	100
MS - 436	Advanced Functional Analysis	4	40	60	100
			Continued	to the Next	Page

Continued to the Next Page

MS - 437	Tensor Analysis and Riemanian Geometry	4	40	60	100
MS - <mark>438</mark>	Algebraic Topology	4	40	60	100
MS - <mark>439</mark>	Theory of Fields	4	40	60	100
MS - <mark>440</mark>	Spaces of Analytic Functions	4	40	60	100
MS - 441	Algebraic Geometry	4	40	60	100
MS - <mark>442</mark>	Theory of Relativity	4	40	60	100
MS - 443	Commutative Algebra	4	40	60	100
MS - <mark>444</mark>	Theory of Integral Equations	4	40	60	100
MS - 445	Approximation Theory	4	40	60	100
	TOTAL	24	215	385	600

SA: Sessional Assessment

UE: University Examination

Course Title	Dissertation/Major Project	Maximum Marks	200
Course Code	MS-431	Supervisor	50
Credits	4	External Examiner	150

- * Each student has to submit a project on a topic of his/her own choice under the supervision of a teacher selected as guide by the student's choice from the Departmental faculty or under the joint supervision of a teacher from the Department and an appropriate member from any other Department or industry but after the permission of the Departmental guide.
- * The marks by internal /external examiner will be assigned on the basis of the project report submitted by the student and the viva-voce examination.
- * The breakup for the dissertation and viva-voce marks is as follows:

	Dissertation	Viva - Voce	Total
Supervisor	30	20	50
External Examiner	100	50	150

After a student completes the Major project, we expect a student have understood.

- 1 The method of searching literature, on a particular topic, form the internet.
- 2 The various potential areas of research, in a particular field, that can lead to a research degree(M. Phil/ Ph. D).
- 3 Various ethics of good research.
- 4 How to read a research paper and present it in his / her own words.
- 5 The use of various concepts from different courses for studying a research paper.
- 6 How to employ the skills learned through different courses to simplify complicated situations.
- 7 The value of teamwork.

Course Title	Technical Communication	Maximum Marks	100
Course Code	MS-432	University Examination	60
Credits	4	Sessional Assessment	40
		Duration of Exam.	3 HOURS
Objectives	• • • •	Mathematics is to make them acquainted with English lang th English language will increase their prospects of emp	
UNIT Communication-I 01		to communication; verbal, non-verbal, oral and written c skills - effective use of presentation software and overh	
UNIT Communication-II 02	Parts of speech; words frequently misspelt; formati writing; narration; change of voices; paragraph writir	ion of words; tenses; one word substitutions; use of prep ng; punctuation.	osition; précis
UNIT Writing skills, group 03 discussion and interview	resignation; application / letters with bio-data; noti	structure and layout; curriculum vitae; letter of acceptance; agenda; minutes; group discussion - definition, methoc rerview - types of interview and interview skills with practic	dology, helpful

On successful completion of this course, we expect that a student

- 1 Be able to explain the importance of good communication skills in verbal, non-verbal, oral and written communication.
- 2 Be able to explain the techniques to improve communication and presentation skills.
- 3 Be able to write reports etc in a precise and correct way.
- 4 Be able to explain the basic principles of good writing.
- 5 Be able to explain the method of presenting one's curriculum vitae.
- 6 Be able to write various official and unofficial letters, notices, agendas, minutes of meetings etc.
- 7 Know how to behave in a group discussion with better expressions.
- 8 Know how to behave in an interview with better expressions.

Note for Paper Setting

TEXT BOOKS

- 1. Balasubramanian, T., (1981), A Textbook of English Phonetics for Indian students, MacMillan India Ltd.
- 2. Eastwood, J., (1999), Oxford Practice Grammar, Oxford University Press.
- 3. Jones, L., (1998), Cambridge Advanced English, Cambridge University Press.

- 1. Lesikar, R. V. and Pettir, Jr., (2004), Business Communication Theory and Applications, 6th edition, A. I. T. B. S, New Delhi.
- 2. Thakar, P. K., Desai, S.D. and Purani, J. J., (1998), Developing English Skills, Oxford University Press.

Course Title	Lab Course on SPSS	Maximum Marks	50
Course Code	MS-433	University Examination	25
Credits	2	Sessional Assessment	25
		Duration of Exam.	2 HOURS

- * Each student is required to maintain a practical record book.
- * Two practical tests, one Internal and one External, are to be conducted.
- * Each practical test will be of 25 marks.
- * The marks in each practical test will be divided into 4 parts, program code, program execution , Viva-Voce and practical record book.
- * The student has to pass both internal and external practical tests separately scoring a minimum of 10 marks in each test

Course	Title	Complex Dynamics	Maximum Marks	100
Course	Code	MS-434	University Examination	60
Credits		4	Sessional Assessment	40
			Duration of Exam.	3 HOURS
Objecti	ves	The aim of this course is to study fundamentals of co plane; Fatou and Julia sets.	mplex dynamics -Conformal map, iterations of Rational f	unctions in a
UNIT 01			ap, conformal and isogonal maps; conformality theo of a bilinear transformation; cross ratio; exponential an included).	
UNIT 02		Iteration of a Mobius transformation; attracting, rep complex plane; chordal metric; spherical metric; relat	elling and indifferent fixed points; iterations of R(z) = z ² ion between chordal metric and spherical metric.	; the extended
UNIT 03	Conjugacy classes of rational maps	Rational maps; Lipschitz condition; conjugacy classes Riemann Hurwitz relation.	of rational maps; valency of a function; fixed points;	critical points;
UNIT 04	Equicontinuity and Normality	Equicontinuous functions; normality sets; Fatou se equicontinuity.	ts and Julia sets; completely invariant sets; norma	l families and
UNIT 05		Properties of Fatou and Julia sets; exceptional point components of the Fatou set; the Euler characteristic	s; backward orbit; minimal property of Julia sets; comp	letely invariant

On successful completion of this course, we expect that a student

- 1 Explain the concepts of repelling points, attracting points and indifferent fixed points.
- 2 Explain the concept of extended complex plane, chordal metric, spherical metric and relationship between chordal and spherical metrics.
- 3 Explain the concepts of conjugacy class of a rational map, valency of a function, completely invariant sets, normal families and equicontinuous family of functions.
- 4 Explain the cocept of exceptional points, backward orbit and minimal property of Julia sets .
- 5 Explain the concepts of Fatou sets, Julia sets and relationship between them.

Note for Paper Setting

TEXT BOOKS

- 1. Beardon, A. F.(1991), Iteration of Rational Functions, Springer Verlag, New York.
- 2. Carleson, L. and Gamelin, T. W., (1993), Complex Dynamics, Springer Verlag.

- 1. Hua, X. H., Yang, C. C., (2000), Dynamics of Transcendental Functions, Gordan and Breach Science.
- 2. Livi, R., Nadal, J. P. and Packard, N., (1993), Complex Dynamics, Nova Science Publication, Inc.
- 3. Morosawa, S., Nishimura, Y., Taniguchi, M., Ueda, T., (2000), Holomorphic Dynamics, Cambridge University Press.

Course	Title	Banach Algebras	Ma×imum Marks	100
Course	Code	MS-435	University Examination	60
Credits		4	Sessional Assessment	40
			Duration of Exam.	3 HOURS
Objecti	ves	The aim of this course to study Banach algebra and i	ts spectral theory.	
UNIT 01	Banach Algebra and its spectral properties		Banach Algebra; ideals in a Banach algebra; proper s of maximal ideas of a Banach algebra; quotient space formula for calculating spectral radius.	
UNIT 02	Spectral and Riesz functional calculus	Riesz functional calculus and its uniqueness; spectral of a linear operator; approximate point spectral of a	mapping theorem; dependence of the spectral on the a linear operator.	lgebra; spectral
UNIT 03	Abelian Banach algebra and C* algebra	•	f a Banach algebra and its properties; Gelfand tran xamples and elementary properties of C* algebra; Abelia	
UNIT 04	C* – algebra – I		a; space of positive elements and their properties; polar a c* - algebras; cyclic representation; state of a c*-alg	
UNIT 05	C*-algebra - II	Spectral measures; WOT; SOT; spectral theorem; Fuglede – Putnam theorem; Abelian Van Neumann alge	topologies on B(H); commuting operators; double comm bras.	utant theorem;

On successful completion of this course, we expect that a student

- Explain the concept, examples and properties of Banach Algebra, quotient space of a Banach algebra and the set of invertible elements of a Banach algebra.
- 2 Explain the concept of ideals and maximal ideas of a Banach algebra.
- 3 Explain the concept of spectrum of an element of a Banach algebra and formula for calculating spectral radius.
- 4 Explain Riesz functional calculus and its uniqueness, spectral mapping theorem and dependence of the spectral on the algebra.
- 5 Explain Gelfand Mazur theorem, Gelfand transforms and its properties, radical of a Banach algebra and maximal ideal space of a Banach algebra with its properties.
- 6 Explain the concept and elementary properties of C^{*} algebra, Abelian C^{*} algebra, functional calculus in C^{*} algebra, positive elements in C^{*} algebra and their space with properties.
- 7 Explain the concept of representation of a c* algebra, state of a c*-algebra, Gelfand Naimark Segal construction and Abelian
 Van Neumann algebra.
- 8 Explain some fundamental theorems such as double commutant theorem and Fuglede Putnam theorem.

Note for Paper Setting

TEXT BOOKS

1. Conway, J. B., (2008), A Course in Functional Analysis, 2nd edition, Springer.

- 1. Douglas, R. G., (2008), Banach Algebra Techniques in Operator Theory, 2nd edition, Springer.
- J.M.G. Fell and R.S. Doran (1988), Representation of *-Algebras, Locally Compact Groups and Banach * Algebraic Bundles, Vol I, II, Academic Press.

Course	Title	Advanced Functional Analysis	Maximum Marks	100
Course	Code	MS-436	University Examination	60
Credits		4	Sessional Assessment	40
			Duration of Exam.	3 HOURS
Objecti	ves	The aim of this course to study advance topics of fur	ctional analysis.	
UNIT 01	Topological vector spaces (TVS	Definition and examples of topological vector spaces local base in a TVS; types of TVS; separation proper	; convex and absorbing sets; translation and multiplicat ties; simple properties of closure and interior in TVS.	ion operators;
UNIT 02	Linear transformations		ces; relation between LCTVS and its dimension; metriz Inded linear transformations; semi norm and local convex perties.	
UNIT 03	Fundamentals theorems and special spaces	•	ormable; quotient spaces of a TVS; semi norm and quotie ntinuity; Banach - Steinhaus theorem; continuity of limit and its corollaries.	
UNIT 04	Some fundamental theorems		Hahn-Banach separation theorem and its various corolla of a TVS; Banach- Alaogule theorem and its applications.	
UNIT 05	Convexity	Convex Hull of a subset of a TVS and its properties; bipolar theorem; Barelled and Bornological spaces; see	extreme points; the Krein- Milman's theorem; Milman's t ni reflexive and reflexive topological vector spaces.	heorem; polar;

On successful completion of this course, we expect that a student

- 1 Explain the concept and examples of topological vector spaces(TVS), convex and absorbing sets, local base in a TVS and Locally convex TVS with its relation with dimension of the space.
- 2 Explain the separation properties in a TVS and the concept of closure and interior in a TVS.
- 3 Explain the concept and properties of continuity of linear mappings and relationship between F-space and closed subspace of a TVS.
- 4 Explain the concept of semi norm, its various properties and minkowski's functional.
- 5 Explain some Fundamental theorems such as Banach Steinhaus theorem, open mapping theorem (with consequences), Closed graph theorem, Hahn-Banach separation theorem (with corollaries), Banach- Alaogule theorem (with applications), the Krein- Milman's theorem, Milman's theorem and bipolar theorem.
- 6 Explain the necessary and sufficient condition for a TVS to be normable and quotient spaces of a TVS.
- 7 Explain the spaces $C(\Omega)$, $H(\Omega)$; $C = (\Omega)$ and Qk, Lp(0 < P < 1) and the continuity of limit of sequence of continuous linear mappings.
- 8 Explain the concept of bilinear mappings, the weak and weak* topology, Convex Hull (with properties), extreme points, Barelled and Bornological spaces, semi reflexive and reflexive topological vector spaces.

Note for Paper Setting

TEXT BOOKS

1. Rudin, W., (1973), Functional Analysis, Tata Mcgraw Hill.

- 1. Schwartz, L., (1975), Functional Analysis, Courant Institute of Mathematical Sciences.
- 2. Treves, F. (1967), Topological Vector spaces, Distributions and Kernels Academics Press.
- 3. Kothe, G. (1976), Topological Vector Spaces-II, Springer Verlag, New York.
- 4. Larsen, R., (1972), Functional Analysis, Marcel Dekker.

Course	Title	Tensor Analysis and Riemanian Geometry	Maximum Marks	100
Course	Code	MS-437	University Examination	60
Credits	;	4	Sessional Assessment	40
			Duration of Exam.	3 HOURS
Objecti	ves	The aim of this course to study fundamental ideas o	f tensors and their various types in detail.	
UNIT 01	Tensors	Idea of differentiable manifolds with n-dimensions; contravariant (tangent) and covariant(cotangent) vec contravariant and covariant tensors; symmetric contraction; composition of tensors; quotient law; rea	tors; scalar product of two vectors; tensor spa and skew-symmetric tensors; addition and r	ce of rank more than one nultiplication of tensors;
UNIT 02	Tensors and vectors	Riemannian space; fundamental tensor; length of a vectors; inclination of two vectors, orthogonal vect hypersurface; principle directions for a symmetric co	ors; coordinate hypersurfaces; coordinate curv	res; field of normals to a
UNIT 03	Derivative of a vector and tensor	Levi-Civita tensors; Christoffell symbols and secon covariant derivative of a contravariant and covariant a tensor; divergence of a vector.		•
UNIT 04	Geodesic	Gaussian curvature; Riemann curvature tensor; geod deviation; Riemannian coordinates; geodesic in Euclid		esic coordinates; geodesic
UNIT 05	Tensor and curvature	Parallel transport along an extended curve; curvatur field; space-time symmetries (homogeneity and isotr		-

On successful completion of this course, we expect that a student

- Explain the concept of a tensor (with various operations such as addition, multiplication, composition) contravariant and covariant tensors, symmetric and skew-symmetric tensors, Levi-Civita tensors, Christoffell symbols,
- 2 Explain the idea of differentiable manifolds and contravariant (tangent) and covariant(cotangent) vectors.
- 3 Explain the Riemannian space, coordinate hypersurfaces and field of normals to a hypersur face.
- 4 Explain the principle directions for a symmetric covariant tensor of the second order.
- 5 Explain the covariant derivative of a contravariant and covariant vector and curl of a vector with its derivative.
- 6 Explain the covariant differentiation of a tensor and divergence of a vector.
- 7 Explain Gaussian curvature, Riemann curvature tensor, geodesics and its differential equations and coordinates.
- 8 Explain the Ricci tensor, space-time symmetries (homogeneity and isotropy), space time of constant curvature and conformal transformations.

Note for Paper Setting

TEXT BOOKS

- 1. Weatherburn, C. E., (1986), An Introduction to Riemannian Geometry and Tensor Calculus, Cambridge University Press.
- 2. Narlikar, J.V., (1978), General Relativity and Cosmology, The Mac-Millan Company of India Ltd.

- 1. Srivastava, S. K. & Sinha, P. K., (1998), Aspects of Gravitational Interactions, Nova Science publications Inc., Commack, NY.
- 2. Sokolnikoff, I. S., (1964), Tensor Analysis, I. S. John Wiley & Sons, Inc.

Course	Title	Algebraic Topology	Maximum Marks	100
Course	Code	MS-438	University Examination	60
Credite	5	4	Sessional Assessment	40
			Duration of Exam.	3 HOURS
Objecti	ives	The aim of this course to study topology in algebraic	: context.	
UNIT 01	Homotopy-I	Homotopy of paths; equivalence of path homotopy re topological space; homomorphism induced by continue		perties; fundamental group of a
UNIT 02	Homotopy-II	Covering spaces; covering map examples; local hor correspondence isomorphism between S ¹ and Z, retr disc.		
UNIT 03	Fundamental groups	Deformation retracts and homotopy type; the funda project plane; non commutatively of fundamental gro		some surfaces; compactness of
UNIT 04	Covering spaces-I	Equivalence of covering spaces; the general lifting la group; universal covering space; space without any u connected space.		
UNIT 05	Covering spaces-II	Covering transformation; group of covering transfor algebra; Borsule-Ulam theorem for S ² the bisection		; the fundamental theorem of

On successful completion of this course, we expect that a student

- 1 Explain the concept of Homotopy of paths, their equivalence, product and various basic properties.
- 2 Explain the concept of fundamental group of a topological space and homomorphism induced by a continues path.
- 3 Explain the concept of a covering space, covering map examples, local homomorphism and the fundamental group of circle.
- 4 Explain some fundamental theorem such as non-retraction theorem and Brouwer fixed point theorem for the disc.
- 5 Explain the concept of Deformation retracts and homotopy type and the fundamental group of Sⁿ with its basic properties such as non commutatively of fundamental group of figure eight and double tores.
- 6 Explain some fundamental theorems such as the general lifting lemma, the fundamental theorem of algebra, Borsule-Ulam theorem for S² and the bisection theorem.
- 7 Explain equivalence of covering spaces, relation between equivalent covering maps and conjugations of sub group, existence of covering spaces and semi locally simply connected space.
- 8 Explain the covering transformation, group of covering transformations and regular covering map.

Note for Paper Setting

TEXT BOOKS

1. Munkers, J.R. ,(2000), Topology, 2nd Edition, PHI.

REFERENCE BOOKS

1. Greenberg, J. M. and Harper, R. J., (1981), Algebraic Topology: A First Course, ABP.

Course	Title	Theory of Fields	Maximum Marks	100
Course	Code	MS-439	University Examination	60
Credit	S	4	Sessional Assessment	40
			Duration of Exam.	3 HOURS
Object	ives	The aim of this course to study the advance topics a	lgebra in field theory.	
UNIT 01	Finite and algebraic extension	element; necessary and sufficient condition for an	finite extension; transitivity of finite extension propert element to be algebraic in terms of dimension of the sn a and transitivity of algebraic extension property; algebr	nallest field;
UNIT 02	Roots of polynomials and construction with straight edge and compass	Roots of a polynomial over field; remainder theorem; number of a roots a polynomial in an extension field; existence of extension of F of an irreducible polynomial over F; splitting field; uniqueness of splitting field; constructible real numbers of their properties; impossibility of trisecting 60°, duplicating cube and constructing a regular septagon by straight edge of compass; derivative of a polynomial; simple extension; relation between simple extension and characteristic of a field.		numbers and ht edge and
UNIT 03	Galois theory		the group G(K,F); the inequality O(G(K,F) ≤ [K:F]; field o ion and its relation with splitting field, Galois group of c	
UNIT 04		solvable group; non-solvability of S_n (n \ge 5); relation	tween solvability and commutator subgroups; homomorphic between solvability by radicals of a polynomial and solval ≥ 5; Galois group; simple extension based on above topics.	-
UNIT 05	Finite fields		aving same number of elements; existence of finite fields; g Nynomials over finite fields; nature of roots; relation betw	•

On successful completion of this course, we expect that a student

- 1 Explain the concept of finite extensions, algebraic elements, algebraic numbers and transcendence of e.
- 2 Explain the concept of roots of polynomial over field, remainder theorem, irreducible polynomials, splitting filed, constructible real numbers and their properties.
- 3 Explain the relation between simple extension and characteristic of a field.
- 4 Explain the concept of automorphism of a fields, fixed field of a group and normal extension.
- 5 Explain the concept of fundamental theorem of galois theory, galois group of a polynomial.
- 6 Explain the concept of solvable group, commutator sub group, relation between solvability and commutator subgroup.
- 7 Explain the concept of radicals, radicals of a polynomial and solvability of polynomial of degree ≥ 5 .
- 8 Explain the concept of finite field, existence of a finite field and roots of irreducible polynomials over finite fields.

Note for Paper Setting

TEXT BOOKS

1. Herstein, I. N., (2004), Topics in Algebra, 2nd edition, Wiley Student Edition.

REFERENCE BOOKS

2. Lidl, R. and PilzG. , (2004), Applied Abstract Algebra, 2nd edition, Springer.

Course	Title	Spaces of Analytic Functions	Ma×imum Marks	100
Course	Code	MS-440	University Examination	60
Credits	5	4	Sessional Assessment	40
			Duration of Exam.	3 HOURS
Objecti	ves	The aim of this course to introduced the students b	y the concept of Fourier series and its applications	s.
UNIT 01	Fourier series	Review of Fourier series, Fourier transform and its properties; convolution theorem; the inversion theorem; uniqueness theorem; Plancherel's theorem; Parseval's formula.		
UNIT 02	Fourier transform and harmonic functions	Translation invariant subspaces of L ² ; the Banach Cauchy-Riemann equation; The Laplacian; Poisson ker		
UNIT 03	Mean value property	Mean value property; the Schwarz reflection princip approach regions; maximal functions; non-tangential		•
UNIT 04	Hardy spaces over the unit disk	Sub-harmonic functions, Hardy space $H^p(U)$ in $H^{pn}($ space N, theorem of F and M Riesz, inner and outer		properties, Navanlinna
UNIT 05	Hardy spaces over the upper-half plane	Sub-harmonic functions in the upper-half-plane, H Cauchy integral formula; boundary behavior of funct Wiener theorem.		

On successful completion of this course, we expect that a student

- 1 Explain the concept of Fourier series, Fourier transform(with properties) and some basic theorems such as convolution theorem, the inversion theorem, uniqueness theorem, Plancherel's theorem and Parseval's formula.
- 2 Explain Translation invariant subspaces of L², the Banach algebra L¹, Poisson kernel and the poisson integral of a L¹ function, the Laplacian and some basic theorems such as Cauchy-Riemann equation, Harnack's theorem.
- 3 Explain the concept of Mean value property, maximal functions, non-tangential limits, boundary behavior of Poisson integrals and Poisson integrals of measures.
- 4 Explain some fundamental results such as the Schwarz reflection principle, representation theorems, Arzela-Ascoli theorem.
- 5 Explain the concept of sub-harmonic functions, Hardy space H^p(U) and its various features such as its Banachness.
- 6 Explain Blaschke product (with properties), Navanlinna space N, the theorem of F and M Ries and inner and outer functions factorization.
- 7 Explain Sub-harmonic functions in the upper-half-plane, Hardy space $H^p(\Pi^{+})$ over the upper half plane and its features.
- 8 Explain Poission integral formula, Cauchy integral formula, boundary behavior of functions in H^p(∏⁺), canonical factorization H^p(∏⁺) as a Banachspacea and Paley Wiener theorem.

Note for Paper Setting

TEXT BOOKS

- 1. Duren, P. L., (1970), Theory of HP Spaces, Academic Press.
- 2. Rudin, W., (1987), Real and Complex Analysis, 3rd edition, McGraw Hill Book Co.

- 1. Carnett, J. B., (1981), Bounded Analytic Functions, Academic Press.
- 2. Hoffman, K., (2009), BanachSpaces of Analytic Functions, Prentice Hall Engle wook Cliffs, New Jersay.

Course Title Course Code		Algebraic Geometry	Maximum Marks	100
		MS-441	University Examination	60
Credit	s	4	Sessional Assessment	40
			Duration of Exam.	3 HOURS
Object	ives	The aim of this course to introduce the students by	the concept of algebraic geometry and its application	ons
UNIT 01	Rational maps	Introduction; affine varieties, Hilbert's Null stellensatz, polynomial function and maps; rational functions and maps.		
UNIT 02	Smoothness, singularity and dimension	Projective space; projective varieties; rational functions and morphisms; smoothpoints and dimension, smooth and singular points, algebraic characterizations of the dimension of a variety.		
UNIT 03	Plane curves	Plane cubic curves, plane curves, intersection multipli curve.	city, classification of smooth cubics, the group stru	ucture of an elliptic
UNIT 04	Cubic surfaces	Cubic surfaces, the existence of lines on a cubic, co	nfiguration of the 27 lines, rationality of cubics.	
UNIT 05	Theory of curves	Introduction to the theory of curves, divisors on cur on curves, projective embeddings of curves.	ves, the degree of a principal divisor, Bezout's theo	orem, linear system

On successful completion of this course, we expect that a student

- 1 Explain rational functions and maps, affine varieties and their properties.
- 2 Explain projective space and projective varieties and algebraic characterizations of the dimension of a variety.
- 3 Explain the plane cubic curves and intersection, multiplicity, classification of smooth cubics.
- 4 Explain the group structure of an elliptic curve.
- 5 Explain cubic surfaces and the existence of lines on a cubic.
- 6 Explain configuration of the 27 lines and the rationality of cubics.
- 7 Explain divisors on curves and the degree of a principal divisor
- 8 Explain the bezout's theorem and projective embeddings of curves.

Note for Paper Setting

TEXT BOOKS

1. Hulek, K. (translated by H. Verrill), (2003), Elementary Algebraic Geometry-Student Mathematical Library, vol 20, American Mathematical Society.

- 1. Hartshorne, R., (1977), Algebraic Geometry, Springer Verlag.
- 2. Harris, J., (1992), Algebraic Geometry: A First Course, Springer Verlag.
- 3. Elliptic Curves, Notes on NBHM Instructional Conference held at TIFR,(1991), Mumbai.

Course		Theory of Relativity	Maximum Marks	100
Course	Code	MS-442	University Examination	60
Credits	5	4	Sessional Assessment	40
			Duration of Exam.	3 HOURS
Objecti	ves	The aim of this course to study the theory of relat	ivity and its applications.	
UNIT 01	The special theory of relativity	Inertial frames of reference; postulates of thespecial theory of relativity; Lorentz transformations; length contraction; time dilation;variation of mass; composition of velocities; relativistic mechanics; world events, worldregions and light cone; Minkowski space-time; equivalence of mass and energy.		
UNIT 02	Energy-momentum tensors	The action principle; the electromagnetic theory, cases);conservation laws.	energy-momentum tensors (general); energ	gy-momentum tensors (special
UNIT 03	General theory of Relativity	Introduction; principle of covariance; principle of e Einstein's equations.	equivalence; derivation of Einstein's equation	n; Newtonian approximation of
UNIT 04	Solution of Einstein's equation and tests of general relativity	Schwarz's child solution; particle and photon orbit bending of light; radar echo delay.	s in Schwarzschild space-time; gravitationa	l red shift; planetary motion;
UNIT 05	Brans-Dicke theory	Scalar tensor theory and higher derivative gravity;	Kaluza-Klein theory.	

On successful completion of this course, we expect that a student

- 1 Explain postulates of the special theory of relativity
- 2 Explain the concept of inertial frames of reference, lorentz transformations, length contraction, time dilation, variation of mass, composition of velocities,
- 3 Explain minkowski space-time concept and equivalence of mass and energy, the idea of action principle and energy-momentum tensors (general and special cases).
- 4 Explain the conservation laws and general theory of relativity.
- 5 Explain various principles such as principle of covariance and principle of equivalence.
- 6 Explain the einstein's equation and newtonian approximation of einstein's equations.
- 7 Explain the concepts of schwarz's child solution, particle and photon orbits in schwarzschild space-time.
- 8 Explain scalar tensor theory, higher derivative gravity and kaluza-klein theory.

Note for Paper Setting

TEXT BOOKS

- 1. Narlikar, J.V., (1988), General Relativity & Cosmology, 2nd edition, Macmillan Co. of India Limited.
- 2. Pathria, R.K., (1994), The Theory of Relativity, 2nd edition, Hindustan Publishing Co. Delhi.

- 1. Srivastava, S. K. and Sinha, K. P., (1998), Aspects of Gravitational Interactions, NovaScience Publishers Inc. Commack, New York.
- 2. Rindler, W., (1977), Essential Relativity, Springer-Verlag.
- 3. Wald, R.M., (1984), General Relativity, University of Chicago Press.

Course	Title	Commutative Algebra	Maximum Marks	100
Course	Code	MS-443	University Examination	60
Credits		4	Sessional Assessment	40
			Duration of Exam.	3 HOURS
Object	ives	The aim of this course to study ideals, modules and i	rings.	
UNIT 01	Ideals	Ring, ring homomorphism, ideals, operation on ideals ideals, local ring, Nilradical and Jacobson radical, ex	, quotient rings, zero-divisors, nilpotents and units, pri ercises based on above topics.	me and maximal
UNIT 02	Modules	Module homomorphism, Submodules, Quotient module generated modules; Nakayama lemma, Tensor produc	s, Operation on submodules, direct sum and product of r t of modules, Exercises based on the above topics.	nodules, Finitely
UNIT 03	Localization and decomposition	Localization properties of localization, primary decon based on above topics.	nposition; primary ideals, uniqueness of primary decompo	sition, exercises
UNIT 04	Integral dependence	Integral dependence; transitivity of integral depen topics.	dence, going-Up and going down theorems, exercises	based on above
UNIT 05	Noethrianrings	Chain condition; Noetherian and Artinian modules, N decomposition in Noethrian rings, exercises based on	Noetherian rings; Hilbert basis theorem, irreducible ide above topics.	als and primary

On successful completion of this course, we expect that a student

- 1 Explain the concept, examples and fundamental properties of Ring, ring homomorphism, ideals, quotient rings, zero-divisors, nilpotents and units, prime and maximal ideals, local rings, Nilradical and Jacobson radicals.
- 2 Explain the concept, examples and properties of module, Module homomorphism, Sub modules, Quotient modules, direct sum and product of modules, Finitely generated modules and Tensor product of modules.
- 3 Explain the fundamental theorems such as Nakayama lemma.
- 4 Explain the concept and properties of Localization and primary decomposition.
- 5 Explain the concept and properties of Integral dependence, transitivity of integral dependence.
- 6 Explain the some fundamental theorems such as going-Up and going down theorems, Hilbert basis theorem.
- 7 Explain the concept of Noetherian and Artinian modules, Noetherian rings, irreducible ideals and primary decomposition in Noethrian rings.

Note for Paper Setting

TEXT BOOKS

1. Atiyah, M. f. and Macdonald, I. G., (1994), Introduction to Commutative Algebra, Addision-Wesley Publishing Company.

- 1. Eisenbud, D., (1999), Commutative Algebra; With a View Toward Algebraic Geometry Springer- Verlag, New York.,
- 2. Kunz, E. (1985), Introduction to Commutative Algebraic Geometry, Birkhauser. Reid, M. (1996), Undergraduate Commutative Algebraic: London Mathematical Society Student Texts, Cambridge University Press, Cambridge.

Course	Title	Theory of Integral Equations	Maximum Marks	100	
Course	Code	MS-444	University Examination	60	
Credits	5	4	Sessional Assessment	40	
			Duration of Exam.	3 HOURS	
Objectives		The objective of this course is to introduce students to the fundamentals of Integral Equations and their Applications.			
UNIT 01	Classification of integral equation	Definition and classification of integral equations; regularity conditions; special kind of kernels; integral equation with separable kernels; reduction to a system of algebraic equation; Fredholm alternate; an approximate method.			
UNIT 02	Method of successive approximations	Introduction; iterative scheme; Volterra integral equation; some results about the resolvent kernel; classical Fredholm theory; the method of solution of Fredholm ; Fredholm's first theorem.			
UNIT 03		: Initial value problems; boundary value problems; Dirac- delta function; Green's function approach; Green's function for nth order ordinary differential equations.			
UNIT 04	Symmetric kernels	Introduction, fundamental properties of eigen values and bilinear form, Hilbert- Schmidt theorem & consec	and Eigen functions for symmetric kernel, expansion in e quences, solution of symmetric integral equation.	igen function	
UNIT 05	Singular integral equation	Introduction; the Abel integral equation; Cauchy pr Hilbert kernels; solution of the Hilbert type singular	incipal value for integrals; the Cauchy type integrals; sol integral equation.	ution of the	

On successful completion of this course, we expect that a student

- 1 The concept and classification of integral equations and kernels.
- 2 How to solve the volterra integral equation and fredhlom integral equations by different techniques.
- 3 Applications of integral equations to initial value and boundary value problems.
- 4 The concept of dirac- delta function and green's function.
- 5 The concept of eigen values and eigen functions for symmetric kernels and their fundamental properties.
- 6 The concept of bilinear form, hilbert-schmidt theorem and its consequences.
- 7 The abel integral equation, cauchy principal value for integrals and cauchy type integrals.
- 8 How to solve hilbert type singular integral equation?

Note for Paper Setting

TEXT BOOKS

1. Kanwal, R. P., (1997), Linear Integral Equations (Theory and Technique), 2nd edition, Academic Press Birkhauser.

- 1. Porter, D., and Stirling, D. S. G., (1990), Integral Equations a Practical Treatment from Spectral Theory to Applications, Cambridge University Press.
- 2. M.L. Krasnov(1971), Problems and Exercises Integral Equations, Mir Publication Moscow.

Course	Title	Approximation Theory	Maximum Marks	100
Course	Code	MS-445	University Examination	60
Credits	;	4	Sessional Assessment	40
			Duration of Exam.	3 HOURS
Objecti	ves	The main objectives of this course is to	o familiarize the students with the fundamentals of approx	ximation theory
UNIT 01	Basics of Approximation Theory:	Introduction, Function Spaces, Convex and Strictly Convex Norms, The best approximation, Existence and uniqueness of best approximation (Finite-dimensional subspaces, Strictly convex spaces), Examples of nonexistence etc. A Brief Introduction to: Classical approximation, Abstract approximation, Constructive approximation, etc.		
UNIT 02	Approximation by Algebraic Polynomials	Approximation by Algebraic Polynomials: Uniform Approximation by Algebraic Polynomials, the First Weierstrass Theorem, the Bernstein Polynomials.		
UNIT 03	Approximation by Trigonometric Polynomials		nomials: The second Weierstrass Theorem, the Cheby Estimates with Second Order Moduli, Absolute Optimal Col	
UNIT 04	Positive linear operatorsand functional	Bernstein Operators, Bernstein ineque	functions, the Bohman-Korovkin Theorem, Bernstein op ality, Improved Estimates, Lupas and Phillips operators convergence, King's type approximation.	
UNIT 05	Computer aided Geometric design (CAGD):	types of modulus of continuity. algorith	es and surfaces, de-Casteljau Degree of approximation, ım, Splines, B-splines, Marsden identity, B-Splines as B-splines with multiple knots, Sign changes, affine invaria	s basis functions, Degree of

On successful completion of this course, we expect that a student

- 1 Should be able to explain the concepts of function Spaces, Convex and Strictly Convex Norms and the best approximation with standard examples.
- 2 Should be able to explain the concept of Classical approximation, Abstract approximation and Constructive approximation.
- 3 Should be able to explain the concepts of Approximation and uniform approximation by Algebraic Polynomials.
- 4 Should know the fundamental theorems such as The First Weierstrass Theorem, The second Weierstrass Theorem.
- 5 Should be able to explain the concepts of degree of approximation, Lipschitz classes and different types of modulus of continuity.
- 6 Should be able to explain the concepts of Natural density, Statistical convergence, and King's type approximation.
- 7 Should be able to explain the concepts of Blending (basis) functions, Bezier curves and surfaces, ,Splines, B-Splines, and Marsden identity.
- 8 Should be able to explain the concepts of Knot insertion, B-splines with multiple knots, Sign changes, affine invariance, Blossoming.

Note for Paper Setting

TEXT BOOKS

- 1. Hrushikesh Narhar Mhaskar, Devidas V. Pai (2000), Fundamentals of Approximation Theory, CRC Press.
- 2. G. G. Lorentz, Bernstein Polynomials, Chelsa Publishing Company New York.

- 1. N. L. Carothers, A Short Course on Approximation Theory, Department of Mathematics and Statistics, Bowling Green State University.
- 2. P. P. Korovkin(1960), Linear operators and approximation theory, Hindustan Publishing Corporation, Delhi.
- 3. M J D Powell (1981), Approximation theory and methods, (CUP, reprinted 1988).
- 4. E. W. Cheney (1982), An Introduction to Approximation Theory, 2nd ed., New York: Chelsea.
- 5. R. DeVore, G.G. Lorentz(1993), Constructive Approximation, Springer Verlag.
- 6. R Goldman (2002), Pyramid Algorithms, A Dynamic Programming Approach to Curves and Surfaces for Geometric Modeling, Elsevier.
- 7. Radu Paltanea (2004), Approximation Theory Using Positive Linear Operators, Birkhauser, Springer.