FIRST SEMESTER SYLLABUS

M. Sc. MATHEMATICS

APPLICABLE TO BATCHES

2024 - 2026 2025 - 2027 2026 - 2028

BABA GHULAM SHAH BADSHAH UNIVERSITY RAJOURI, J&K, INDIA

FIRST SEMESTER

COURSE CODE	COURSE TITLE	NO. OF CREDITS	DISTRI	BUTION OF	MARKS
CORE COURSES			SA	UE	TOTAL
MM - 101	Real Analysis - I	4	40	60	100
MM - 102	Theory of Metric Spaces	4	40	60	100
MM - 103	Theory of Measure and Integration	4	40	60	100
MM - 104	Abstract Algebra	4	40	60	100
MM - 105	Complex Analysis – I	2	20	30	50
MM - 106	Set Theory	2	20	30	50
MM - 107	C – Programming	2	25	25	50
MM - 108	Lab Course on MS-107	2	20	30	50
	TOTAL	24	245	355	600

		SEM	ESTER - I	
Course	Title	Real Analysis - I	Maximum Marks	100
Course	Code	MM-101	University Examination	60
Credits	;	4	Sessional Assessment	40
			Duration of Exam.	3 HOURS
Objecti	ves	The objective of this course is to study functions of bounded variation and Power	v in depth the Riemann Integral, pointwise and unifor series.	m convergence of functions,
UNIT 01	Riemann Integral-I	Upper and Lower sums / integrals with properties; Riemann integrable function; Riemann's criterion of existance of Riemann integral; relation of Riemann integrability with continuity and monotonicity; Darboux theorem; Riemann integrability condition in terms of Riemmann sum; Riemann integrability of a function discontinuous at a finite number of points; Properties of Integral - Linearity, positivity & monotonicity property.		
UNIT 02	Riemann Integral (RI) -II) Riemann integrability on subintervals; Mean Value theorem; Composition of a RI function with a continuous function; Modulus of a RI function; Product of RI functions; The fundamental theorems of calculus – I & II; First and second substitution rules; Integration by parts; Integration of vector valued functions; Rectifiable curves; Improper Integrals – Unbounded integrand & Unbounded interval, the integral test.		
UNIT 03	Sequences and Series of Functions	connection of uniform convergence with differentiable function and Weirstrass ap	sequence & series of functions – Cauchy criterion f a continuity, integrabilty & differentiability; Exampl proximation theorem; Various test of uniform converge nation formila, Drichlet test & Abel's test.	e of a continuous nowhere
UNIT 04	Power Series	Uniqueness of power series; Multiplication	Hadamard theorem; existence of derivativatives of a n of power series; The substitution theorem; Reciproco n theorem; Abel limit theorem; Tauber's theorem.	•
UNIT 05	Functions of Bounded Variation	their sum, difference and product; total	& LHL, set of discontinuties is atmost countable; Functi variation; additive property of total variation; total va difference iof monotonic functions; Continuous functions	riation on [a,×] as a functior

On successful completion of this course, we expect that a student can explain

- 1 Upper and Lower sums, upper and lower integrals with their properties and the concept of Riemann integrable function.
- 2 Riemann's criterion of existance of Riemann integral, relation of Riemann integrability with continuity and monotonicity and Riemann integrability of a function discontinuous at a finite number of points.
- 3 elementary properties of Rieman Integral such as Linearity, positivity, monotonicity, Riemann integrability on subintervals, Mean Value theorem and Composition of a RI function with a continuous function.
- 4 The fundamental theorems of calculus I & II, First and second substitution rules and integration by parts
- 5 Integration of vector valued functions, Rectifiable curves and Improper Integrals.
- 6 Point-wise and uniform convergence of sequence & series of functions and connection of uniform convergence with continuity, integrability & differentiability.
- 7 an example of a continuous nowhere differentiable function and Weirstrass approximation theorem and Various test of uniform convergence of series of functions.
- 8 The concept of power series and related concepts and results.
- 9 Monotonic functions and functions of bounded variations along with their properties.

Note for Paper Setting

TEXT BOOKS

1. Al - Gwaiz, M.A.& Elsanousi, S.A.(2015), Elements of Real Analysis, 3rd edition, CRC Press (Taylor & Francis Group).

2. Rudin, W., (1976), Principles of Mathematical Analysis, 3rd edition, McGraw Hill International Edition.

- 1. Bilodeau, G. G., Thie, P. R. and Keough, G.E (2010), An Introduction to Analysis, second edition, Joes and Bartlett Learning.
- 2. Apostol, Tom M., (2002), Mathematical Analysis, 1st edition, Narosa Publishing House.

		SEMESTER	t - I	
Course	Title	Theory of Metric Spaces	Ma×imum Marks	100
Course	Code	MM-102	University Examination	60
Credits	;	4	Sessional Assessment	40
			Duration of Exam.	3 HOURS
Objecti	ves	The aim of this course is to expose the students to various areas of Analysis such as Functional Analysis,	the world of "Metric Spaces" which plays a vital role Real & Complex Analysis, Operator theorey etc.	in understanding
UNIT 01	Metric spaces and point set Topology in Metric spaces	Definition and examples of metric spaces; Holder and Minkowski inequality for finite and infinite sums; Rn and real little lp $(1 \le p \le \infty)$ as vector and metric spaces; the space of all real valued bounded functions as vector and metric space; metrices induced by given metric(es); open and closed balls; Open and closed sets with their elementry properties; Adherent, accumulation, interior and boundary points of a set.		
UNIT 02	Complete and separable Metric Spaces	Convergent sequences in a metric space with basic properties & their connection with adherent points of a set; relation b/w convergence & component - wise convergence in Rn and little lp spaces; Cauchy sequences in a metric space; complete metric spaces with standard examples - Rn and little lp spaces; Cantor's intersection theorem; Nowhere dense sets; Baire's category theorem; Dense sets; separable metric spaces.		
UNIT 03	Compact Metric spaces	Bolozano- Weirstrass property (BWP); sequentially co	compact sets; Union and intersection of compact se ompact spaces (SCMS); Lebesgue Covering Lemma; Relat led sets (TBS); Compactness in terms of complete & TB ering theorem and Heine Borel theorem.	tion b/w Compact
UNIT 04	Continuity & Uniform continuity	convergence of sequences; component - wise continuit	ion of continuity with inverse images of open sets , ry criterion for a function from Rn to Rm; Continuous im continuity of inverse of a bijective CF on a CS; Uniform	age of an open /
UNIT 05	The Space of continuous functions & Metric subspaces	Equicontinuous famliy of functions defined on a compo	n a metric space X) C(X) as a metric space; comple act metric space; the concept of uniformly convergent se nt sequence; charecterization of compact sets in C(X) – open and closed sets in a MSS.	equence; Relation

On successful completion of this course, we expect that a student should be able to explain

- 1 the concept and examples of metric spaces and its standard examples such as Rn, little lp (1≤p≤∞) spaces, spaces of continuous functions etc.
- 2 the concept of open and closed balls; Open and closed sets; adherent, accumulation, interior and boundary points of a set.
- 3 the concepts of convergent and Cauchy sequences in a metric space in particular in Rn and lp spaces.
- 4 the Cantor's intersection theorem, Baire's category theorem and separable metric spaces.
- 5 the concept & examples of compact sets; Spaces with Bolozano- Weirstrass property; sequentially compact spaces and relation between them.
- 6 the concept of totally bounded sets and Compactness in terms of complete & Totally Bounded sets.
- 7 Bolozano- Weirstrass theorem, Lindeloff covering theorem and Heine Borel theorem in the Euclidean space Rn.
- 8 the concept of continuous functions and its various charecterizations in particular in Rn.
- 9 the concept of uniform continuity & its relation with continuity.
- 10 the Fixed point theorem and its application to ODE.
- 11 the concept of equicontinuous famliy of functions and uniformly convergent sequence and relation between therm.
- 12 the charecterization of compact sets in C(X) Ascoli thereo and the concept of metric subspace.

Note for Paper Setting

TEXT BOOKS

- 1. Apostol, Tom M., (2002), Mathematical Analysis, 1st edition, Narosa Publishing House.
- 2. Simmons, G.F. (1983), Topology and Modern Analysis, second Edition, Robert E. Krieger Publishing Company Malabar, Florida.

- 1. Adams, C. and Franzosa, R. (2009), Introduction to Topology Pure and Applied, Pearson.
- 2. Munkers, J.R. ,(2000), Topology, 2nd Edition, PHI.
- 3. Searcoid, M. O., (2007), Metric Spaces, Springer.
- 4. Willard, S., (1976), General Topology, Dover Publications New York.
- 5. Patty, C.W. (2010), Foundations of Topology, second Edition, Jones and Barlet.

		SEMES	TER - I	
Course	e Title	Theory of Measure and Integration	Maximum Marks	10
Course	code	MM-103	University Examination	é
Credit	S	4	Sessional Assessment	4
			Duration of Exam.	3 HOUR
) Dject	ives	The aim of this course is to introduce the stud	dents with the basic ideas and methods of measure	theory and Integration.
UNIT D1	Measure Spaces		of sets, Generation of sigma algebra, borel sigmo sureable space and measure space, outer measure.	a algebra, measure on sign
JNIT D2	Lebesgue Measure	Lebesgue outer measure on R, properties of the lebesgue measure space,Translation invariance of legesgue outer measure and lebesgue measure space, Existence of non- lebesgue measureable sets, Regularity of Lebesgue outer measure.		
UNIT 03	Measureable Functions		measureable functions, Equality almost everywher Measurability of functions on R, Convergence and	•
UNIT 04	Lebesgue Integral		n, Integration of bounded functions on sets of finit nction, bounded convergence theorem, Monotone co	•
UNIT	LP- spaces	Convex function-Jensen's Inequality, LP space	es- Young's inequality, Holder's inequality, Schwa	artz's inequality Minkowski

On suc	cessful completion of this course, we expect that a student
1	explain the concept, examples and properties of sigma algebra, measures of sequence of sets.
2	explain the concept of outer measure, lebesgue outer measure and properties of lebesgue outer measure.
3	explain the concept of existence of non-lebesgue measureable sets.
4	explain the concept, examples and properties of Measureable space, Measureable sets.
5	explain the concept, examples and properties of Measureable functions, Borel sets.
6	explain the concept, examples and properties of integral of measureable function.
7	explain some fundamental theorems such as monotone convergence theorem, Fatou's lemma, D.Egoroff theorem.
8	explain the concepts of L^p-space and its various features such as completeness .

Note for Paper Setting

TEXT BOOKS

- 1. Royden, H.L., (2006), Real Analysis, 3rd edition, Prentice-hall of India Private Limited.
- 2. Yeh, J., (2000), Lectures on Real Analysis, World Scientific.

- 1. Rudin, W., (1987), Real and Complex Analysis, 3rd Edition, Tata Mcgraw-Hill Edition.
- 2. Bauer, H. (2001), Measure and Integration Theory, Walter de Gruyter
- 3. Axler, S. (2024), Measure, Integration & Real Analysis, Springer.

			SEMESTER - I	
Course	: Title	Abstract Algebra	Ma×imum Marks	100
Course	Code	MM-104	University Examination	60
Credit	S	4	Sessional Assessment	40
			Duration of Exam.	3 HOURS
Object	ives	The main objective of this cours	e is to introduce students to the fundamentals of abstract algebra-	group and ring theory.
UNIT 01		Conjugate of an element of a group; class equation and its applications – non-triviality of centre of a group of order pn, Converse of Lagrange's theorem for abelian groups, Cauchy's theorem; number of a conjugate classes in S_n; 1st part of Syllow's theorem; 2nd and 3rd parts of Syllow's theorem(Proofs not included); Applications of Syllow's theorem to determine simplicity of groups of order 42, 20449, pq(p,q primes), 56, 30, An, 108, 72, 108 and 60.		
UNIT 02	Central and composition series of a group	Upper and lower central series of a group; nilpotent group and its subgroups, quotient groups and homomorphic image of a charecterstic subgroup of a group; nilpotent group as a product of Syllow subgroups; Norml and composition series of group; Jordan – Holder theorem.		
UNIT 03	Ring theory	maximal & prime ideal, Homomo embedding of a ring in to a ring	ID, field, subring, ideal (structure of ideal generated by a single or rphism (All homorphisms from Z to Z, Q to Q, R to R & C to C); ng with unity & of an integral domain in to a Field; the field of of quotients of an ID; embedding of a ring in to a ring of endomorphi	characteristic of a ring; quotients of an integral
UNIT 04	Divisibility in Rings, Principal Ideal Domaon and Euclidean Domain	Ideal Domain - relation betwee	nits, associates, irreducible and prime elements in a commutative rin en prime and irreducible elemnents, existence of HCF, Bézout's ide elements; Euclidean Domain - relation b/w PID and ED, algorithm to erms of Euclidean valuation.	ntity, relation between
UNIT 05	Unique Factorisation Domain and Polynomial		relation of UFD with PID and ED, relation b/w prime & irreducible als over a ring R - degree of a polynomial, $F[x]$ as ED, charecter	

Rings Einstein's criteria, primitive polynomials, Gauss lemma, Gauss theorem, the field of rational functions.

On successful completion of this course, we expect that a student is able to explain

- 1 the concept of conjugate of an element, class equation and its applications non-triviality of centre of a group of order pn, Converse of Lagrange's theorem for abelian groups & Cauchy's theorem
- 2 Syllow's theorem and its applications to determine simplicity of groups of various orders such as 42, 20449, pq(p,q primes), 56, 30 etc.
- 3 the concept of upper / lower central series of a group and nilpotent group.
- 4 the concept of Norml and composition series of a group Jordan Holder theorem.
- 5 the concept of ring, ID, field, subring, ideal, quotient ring, maximal & prime ideal & Homomorphism.
- 6 the concept of characteristic of a ring and ring embeddings the field of quotients of an integral domain.
- 7 the concept of division, gcd, units, associates, irreducible and prime elements in a commutative ring with identity.
- 8 the concept of Principal Ideal Domain, Euclidean Domain and relation between them.
- 9 the concept of Unique Factorisation Domain and its relation PID and ED.
- 10 the The ring R[x] of Polynomials over a ring R Einstein's criteria, Gauss lemma and Gauss theorem.

Note for Paper Setting

TEXT BOOKS

- 1. Gallian, J. A. (1998), Contemporary Abstract algebra, Fourth edition, Narosa.
- 2. Gopalakrishnan, N. S. (1986), University Algebra, Second edition, New Age International Limited.
- 3. Zameeruddin, Q., I.N. (2009), Modern Algebra, 8ndedition, Vikas Publishing House.

- 1. Artin, M., (2010), Algebra, 2nd edition, Springer.
- 2. Farmer, D.W., (1963), Groups and Symmetry: A Guide to Discovering Mathematics, American Mathematical Society.
- 3. Herstein, I.N. (2004), Topics in Algebra, 2ndedition, Wiley.
- 4. Levinson, N., (1970), Coding Theory: A Counter Example to G. H. Hardy's Conception of Applied Mathematics, AMS Monthly 77: 249-258

		SEMESTER	. – I	
Course	Title	Complex Analysis -I	Maximum Marks	50
Course	Code	MM-105	University Examination	30
Credits		2	Sessional Assessment	20
			Duration of Exam.	2 HOURS
Objectiv	ves	The aim of this course to teach the students the functions.	damentals of Complex Analysis and a detailed vi	ew of elementry complex
UNIT 01	The field of Complex Numbers	The field of Complex numbers; Polar form of a complex number; Principal nth root; The topology of complex numbers - connected sets; Complex functions - Möbius Transformation, extended complex plane, Stereographic Projection; Introduction to convergence of sequences and series of complex numbers.		
UNIT 02	Analytic Functions	Limit and continuity of a complex function with elementary properties - the continuity of the Argument function; Branches of a function; Analytic funtion; Cauchy Rieman equations and their relationship with analiticity; consequences of Cauchy Riemann equations; Hormonic functions and their connection with analytic functions.		
UNIT 03	Special Functions	Power series - radius of convergence & infinite di elemntary properties; Complex exponents; Complex functions.	· · · · ·	-

On successful completion of this course, we expect that a student

- 1 is able to explain the field of Complex numbers, connected sets, extended complex plane and Complex functions such as Möbius Transformation & Stereographic Projection.
- 2 is able to explain the convergence of sequences and series of complex numbers.
- 3 is able to explain limit and continuity of a complex functions and the concept of branches of a function.
- 4 is able to explain the concept of analytic funtion, its relation with CR equations and the concept of hormonic functions.

is able to explain the concept of power series its adius of convergence & infinite differentiability.

5 is able to explain various properties (especially continuity & differentiability) of the elemntary complex functions such as exponential, logarithmic, and trigonometric functions.

Note for Paper Setting

TEXT BOOKS

1. Mathews, J. H. & Howell, R. W., (2006), Complex Analysis for Mathematics and Engineering, 5th edition, B Jones and Bartlett Publishers Ansari, M.R, (2006) Protecting Human Rights, New Delhi.

2. Matthias, B., Gerald, M., Dennis, P. & Sabalka, L. (2018), A First Course in Complex Analysis, Orthogonal Publishing, I3c Ann Arbor, Michigan (www.orthogonalpublishing.com).

REFERENCE BOOKS

1. Ahlofrs, L. R., (1996), Complex Analysis, McGraw Hill.

2. Brown, J. W. and Churchill, R. V., (2009), Complex Variables and Applications, 8th Edition, McGraw-Hill International.

3. Palka, B. P. (1991), An introduction to complex function theory, Springer.

			SEMESTER - I		
Course	Title	Set Theory	Maximum Marks	50	
Course	Code	MM-106	University Examination	30	
Credits		2	Sessional Assessment	20	
			Duration of Exam.	2 HOURS	
Object	ives	The aim of this course is to numbers, ordinal numbers and	o introduce the students with the ideas of advanced set theory suc I Axiom of choice.	h as countablity, cardina	
UNIT 01	Finite and Infinite Sets	equipotency of (0, 1) with N P(A) with the collection of al set; Equipotency of an inifite	Equipotent sets; Finite, denumerable, countable and uncountable sets; Equipotency of Z, Q & N X N with N, non - equipotency of (0, 1) with N, equipotency of (0, 1) & P(N) with R, non - equipotency of a set A with P(A), equipotency of P(A) with the collection of all functions with domain A and co - domain {0, 1}; Existance of a denumerable set in an infinite set; Equipotency of an inifite set with one of its subsets; A denumerable (Countable) union of denumerable (Countable) sets is denumerable(Countable); Catesian product of two denumerable (Countable) sets.		
UNIT 02	The Axiom of Choice and Related Principles	•	ered and Totally ordered sets; Order Isomorphism; Maximal and ee; Hausdorff's Maximal Principle; Zorn's Lemma; The well ordering th		
UNIT 03	Cardinal and Ordinal numbers	exponentiation with elementar each class of cardinal number	Sum and product of cardinal numbers - associativity and commutativ ry properties; ordering of cardinal numbers - Schröder-Bernstein theo rs; rules of inequality for cardinal numbers; Special properties of infini e sums and products of cardinal numbers; Introduction to the ordinal	brem, Well orderedness of ite cardinal numbers - the	

On successful completion of this course, we expect that a student is able to

1 Explain the basic difference between finite, infinite, countable, uncountable sets and their various properties.

2 Explain various examples of finite, infinite, countable and uncountable sets.

- 3 explain the concept of Partially ordered, well ordered and Totally ordered sets and is able to explain the concept of Order Isomorphism, Maximal and minimal elements in an ordered set.
- 4 to explain the axiom of Choice and its various equivalent forms.
- 5 explain the Axiom of Cardinality and ordinality.
- 6 explain various arithmetic operations on cardinal numbers.
- 7 explain the continum hypothesis.

Note for Paper Setting

TEXT BOOKS

1. Printer, C. C. (2014), A Book of Set Theory, Dover Publications, INC. Mineola, New York

- 1. Hrbalek, K. and Jech, T., (1999), Introduction to set theory, 3rd edition, Marcel Dekker, Ind.
- 2. Halmos, P., (2011), Naïve set theory, Martino Fine Books.
- 3. Lin You Feng, Schu Yeng, (1981), Set Theory with Applications, Second edition, Mariner Publishing Compan
- 4. Enderton , H. B., (19771), Elements of Set Theory, Academic Press.

		•	SEMESTER - I		
Course	e Title	C - Programming	Maximum Marks	50	
Course	e Code	MM-107	University Examination	30	
Credit	S	2	Sessional Assessment	20	
			Duration of Exam.	2 HOURS	
Objectives		Students will be able to develop	nce students analyzing and problem solving skills and to provide b logics which will help them to create programs, and applications ey can easily switch over to any other language in future.		
UNIT 01	Introduction to Problem Solving	• •	Introduction to Programming; Concept of Programming Languages; Categories of Programming Languages; Introduction to Algorithms and Flowcharts; Characteristics of algorithms; Algorithm design tools – Pseudo code and flowchart.		
UNIT 02			•		

UNITDecision Control and
Looping Statements;Decision Control and Looping Statements - Introduction, Conditional Branching Statements, Iterative Statements, Nested03Looping Statements;
Functions & ArraysLoops, Break and Continue Statements and goto Statements;
Prototype; Function Definition. Arrays - Introduction and Declaration of Arrays.Introduction, Conditional Branching Statements, Iterative Statements, Nested

On successful completion of this course, we expect that a student is able to explain

- 1 the concept of Programming Languages and their Categories.
- 2 the concept of Algorithms and Flowcharts with their characteristics and design tools.
- 3 brief history of C its Features, structure and life Cycle of a C- Program.
- 4 basic Data Types and various operators such as Arithmetic, Relational, Equality, Logical, Unary, Conditional, Bitwise, Assignment etc.
- 5 the concepts of decision Control and Looping Statements, Functions & Arrays.

Note for Paper Setting

TEXT BOOKS

- 1. Balaguruswamy, E., (2004), Programming in ANSI C, 4th edition, Tata McGraw Hill.
- 2. Saxena, S., (2007), MS- Office for Everyone, 1st edition, Vikas Publications, New Delhi.
- 3. Sinha, P.K., (2007), Computer Fundamentals, 4th edition, BPB Publications, New Delhi.
- 4. Taxali, R.K., (2007), PC Software for Windows, 1st edition, TMH, New Delhi.

- 1. Basandra, K., (2008), Computers Today, 1st edition, Galgotia publication, New Delhi.
- 2. Schiltz, H., (2004), C: The Complete Reference, 4th edition, Tata McGraw Hill.

	SEI	NESTER - I	
ourse Title	Lab course on MM-107	Maximum Marks	5
Course Code	MM-108	University Examination	2
redits	2	Sessional Assessment	2
		Duration of Exam.	2 HOUR
Objectives	The aim of this course is to give hand 107.	- on practice of the theoretical part about C- programming	g learned in the course M/
Each student	is required to maintain a practical record b	book.	
Two practical	l tests, one Internal and one External, are	to be conducted.	
Each practice	al test will be of 25 marks.		

On successful completion of this course, we expect that a student

- 1 Should be able to appreciate the use of computers in engineering industry
- 2 Should have developed in him / her the basic understanding of computers, the concept of algorithms and algorithmic thinking.
- 3 Should have developed in him / her the ability to analyze a problem and develop an algorithm to solve it.
- 4 Should know the use of the C programming language to implement various algorithms.